JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Epitaxial assembly dynamics of mutant amyloid β25-35_N27C fibrils explored with time-resolved scanning force microscopy.

Biophysical Chemistry 2013 December 32
Amyloid β25-35 (Aβ25-35) is a toxic fragment of Alzheimer's beta peptide. We have previously shown that Aβ25-35 fibrils form a trigonally oriented network on mica by epitaxial growth mechanisms. Chemical reactivity can be furnished to the fibril by introducing a cysteine residue (Aβ25-35_N27C) while maintaining oriented assembly properties. Previously we have shown that fibril binding to mica is strongly influenced by KCl concentration. In the present work we explored the kinetics of epitaxial assembly of the mutant fibrils at different peptide and KCl concentrations by using in situ time-resolved AFM. We measured the length of Aβ25-35_N27C fibrils as a function of time. Increasing free peptide concentration enhanced fibril growth rate, and the critical peptide concentration of fibril assembly was 3.92μM. Increasing KCl concentration decreased the number of fibrils bound to the mica surface, and above 20mM KCl fibril formation was completely abolished even at high peptide concentrations. By modulating peptide and KCl concentrations in the optimal ranges established here the complexity of the Aβ25-35_N27C network can be finely tuned.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app