JOURNAL ARTICLE

Crosstalk between tyrosine kinase receptors, GSK3 and BMP2 signaling during osteoblastic differentiation of human mesenchymal stem cells

Emmanuel Biver, Cyril Thouverey, David Magne, Joseph Caverzasio
Molecular and Cellular Endocrinology 2014 January 25, 382 (1): 120-130
24060635
Bone morphogenic proteins (BMPs) promote mesenchymal stem cell (MSC) osteogenic differentiation, whereas platelet derived growth factor (PDGF) and fibroblast growth factor (FGF) activate their proliferation through receptors tyrosine kinase (RTK). The effects of PDGF or FGF receptor signaling pathway on BMP2-induced osteoblastic differentiation was investigated in human MSC (HMSC). Inhibition of PDGF or/and FGF receptors enhanced BMP2-induced alkaline phosphatase (ALP) activity, expression of Osterix, ALP and Bone sialoprotein, and matrix calcification. These effects were associated with increased Smad-1 activity, indicating that mitogenic factors interfere with Smad signaling in HMSC differentiation. RTK activate MAPK and inhibit GSK3 through the PI3K/Akt pathway. Biochemical analysis indicated that MAPK JNK and GSK3 especially are potential signaling molecules regulating BMP-induced osteoblastic HMSC differentiation. These observations highlight that the osteogenic effects of BMP2 are modulated by mitogenic factors acting through RTK.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24060635
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"