JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Volumetric optoacoustic imaging with multi-bandwidth deconvolution.

Optoacoustic (photoacoustic) imaging based on cylindrically focused 1-D transducer arrays comes with powerful characteristics in visualizing optical contrast. Parallel reading of multiple detectors arranged around a tissue cross section enables capturing data for generating images of this plane within micro-seconds. Dedicated small animals scanners and handheld systems using 1-D cylindrically focused ultrasound transducer arrays have demonstrated real-time cross-sectional imaging and high in-plane resolution. Yet, the resolution achieved along the axis perpendicular to the focal plane, i.e., the elevation resolution, is determined by the focusing capacities of the detector and is typically lower than the in-plane resolution. Herein, we investigated whether deconvolution of the sensitivity field of the transducer could lead to tangible image improvements. We showcase the findings on experimental measurements from phantoms and animals and discuss the features and the limitations of the approach in improving resolution along the elevation dimension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app