Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing.

Gene 2013 December 16
In this study, a global analysis of miRNA expression from rosette leaves (RLs) and folding leaves (FLs) of Chinese cabbage (Brassica rapa L. ssp. pekinensis) was conducted using high-throughput Solexa sequencing. In total, over 12 million clean reads were obtained from each library. Sequence analysis identified 64 conserved miRNA families in each leaf type and 104 and 95 novel miRNAs from RLs and FLs, respectively. Among these, 61 conserved miRNAs and 61 novel miRNAs were detected in both types of leaves. Furthermore, six conserved and 21 novel miRNAs were differentially expressed between the two libraries. Target gene annotation suggested that these differentially expressed miRNAs targeted transcription factors, F-box proteins, auxin and Ca(2+) signaling pathway proteins, protein kinases and other proteins that may function in governing leafy head formation. This study advanced our understanding of the important roles of miRNAs in regulating leafy head development in Chinese cabbage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app