COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Discrepancies between cardiovascular magnetic resonance and Doppler echocardiography in the measurement of transvalvular gradient in aortic stenosis: the effect of flow vorticity.

BACKGROUND: Valve effective orifice area EOA and transvalvular mean pressure gradient (MPG) are the most frequently used parameters to assess aortic stenosis (AS) severity. However, MPG measured by cardiovascular magnetic resonance (CMR) may differ from the one measured by transthoracic Doppler-echocardiography (TTE). The objectives of this study were: 1) to identify the factors responsible for the MPG measurement discrepancies by CMR versus TTE in AS patients; 2) to investigate the effect of flow vorticity on AS severity assessment by CMR; and 3) to evaluate two models reconciling MPG discrepancies between CMR/TTE measurements.

METHODS: Eight healthy subjects and 60 patients with AS underwent TTE and CMR. Strouhal number (St), energy loss (EL), and vorticity were computed from CMR. Two correction models were evaluated: 1) based on the Gorlin equation (MPG(CMR-Gorlin)); 2) based on a multivariate regression model (MPG(CMR-Predicted)).

RESULTS: MPGCMR underestimated MPGTTE (bias = -6.5 mmHg, limits of agreement from -18.3 to 5.2 mmHg). On multivariate regression analysis, St (p = 0.002), EL (p = 0.001), and mean systolic vorticity (p < 0.001) were independently associated with larger MPG discrepancies between CMR and TTE. MPG(CMR-Gorlin) and MPGTTE correlation and agreement were r = 0.7; bias = -2.8 mmHg, limits of agreement from -18.4 to 12.9 mmHg. MPG(CMR-Predicted) model showed better correlation and agreement with MPGTTE (r = 0.82; bias = 0.5 mmHg, limits of agreement from -9.1 to 10.2 mmHg) than measured MPGCMR and MPG(CMR-Gorlin).

CONCLUSION: Flow vorticity is one of the main factors responsible for MPG discrepancies between CMR and TTE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app