Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury.

Myocardial reperfusion injury is mediated by several processes including increase of reactive oxygen species (ROS). The aim of the study is to identify potential sources of ROS contributing to myocardial ischemia-reperfusion injury. For this purpose, we investigated myocardial ischemia/reperfusion pathology in mice deficient in various NADPH oxidase isoforms (Nox1, Nox2, Nox4, as well as Nox1/2 double knockout). Following 30min of ischemia and 24h of reperfusion, a significant decrease in the size of myocardial infarct was observed in Nox1-, Nox2- and Nox1/Nox2-, but not in Nox4-deficient mice. However, no protection was observed in a model of chronic ischemia, suggesting that NOX1 and NOX2-mediated oxidative damage occurs during reperfusion. Cardioprotective effect of Nox1 and Nox2 deficiencies was associated with decrease of neutrophil invasion, but, on the other hand an improved reperfusion injury was also observed in isolated perfused hearts (Langendorff model) suggesting that inflammatory cells were not the major source of oxidative damage. A decrease in global post-reperfusion oxidative stress was clearly detected in Nox2-, but not in Nox1-deficient hearts. Analysis of key signaling pathways during reperfusion suggests distinct cardioprotective patterns: increased phosphorylation was seen for Akt and Erk in Nox1-deficient mice and for Stat3 and Erk in Nox2-deficient mice. Consequently, NOX1 and NOX2 represent interesting drug targets for controlling reperfusion damage associated with revascularization in coronary disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app