Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Angle stable nails provide improved healing for a complex fracture model in the femur.

BACKGROUND: Conventional nails are being used for an expanding range of fractures from simple to more complex. Angle stable designs are a relatively new innovation; however, it is unknown if they will improve healing for complex fractures.

QUESTIONS/PURPOSES: When comparing traditional and angle stable nails to treat complex open canine femur fractures, the current study addressed the following questions: do the two constructs differ in (1) radiographic evidence of bone union across the cortices; (2) stability as determined by toggle (torsional motion with little accompanying torque) and angular deformation; (3) biomechanical properties, including stiffness in bending, axial compression, and torsional loading, and construct failure properties in torsion; and (4) degree of bone tissue mineralization?

METHODS: Ten hounds with a 1-cm femoral defect and periosteal stripping were treated with a reamed titanium angle stable or nonangle stable nail after the creation of a long soft tissue wound. Before the study, the animals were randomly assigned to receive one of the nails and to be evaluated with biomechanical testing or histology. After euthanasia at 16 weeks, all operative femora were assessed radiographically. Histological or biomechanical evaluation was conducted of the operative bones with nails left in situ compared with the nonoperative contralateral femora.

RESULTS: Radiographic and gross inspection demonstrated hypertrophic nonunion in all 10 animals treated with the nonangle stable nail, whereas six of 10 animals treated with the angle stable nail bridged at least one cortex (p = 0.023). The angle stable nail construct demonstrated no toggle in nine of 10 animals, whereas all control femora exhibited toggle. The angle stable nail demonstrated less angular deformation and toggle (p ≤ 0.005) and increased compressive stiffness (p = 0.001) compared with the conventional nonangle stable nail. Histology demonstrated more nonmineralized tissue in the limbs treated with the conventional nail (p = 0.005).

CONCLUSIONS: Angle stable nails that eliminate toggle lead to enhanced yet incomplete fracture healing in a complex canine fracture model.

CLINICAL RELEVANCE: Care should be taken in tailoring the nail design features to the characteristics of the fracture and the patient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app