JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells).

Developmental Biology 2014 January 2
The epiblast (EPI) and the primitive endoderm (PE), which constitute foundations for the future embryo body and yolk sac, build respectively deep and surface layers of the inner cell mass (ICM) of the blastocyst. Before reaching their target localization within the ICM, the PE and EPI precursor cells, which display distinct lineage-specific markers, are intermingled randomly. Since the ICM cells are produced in two successive rounds of asymmetric divisions at the 8→16 (primary inner cells) and 16→32 cell stage (secondary inner cells) it has been suggested that the fate of inner cells (decision to become EPI or PE) may depend on the time of their origin. Our method of dual labeling of embryos allowed us to distinguish between primary and secondary inner cells contributing ultimately to ICM. Our results show that the presence of two generations of inner cells in the 32-cell stage embryo is the source of heterogeneity within the ICM. We found some bias concerning the level of Fgf4 and Fgfr2 expression between primary and secondary inner cells, resulting from the distinct number of cells expressing these genes. Analysis of experimental aggregates constructed using different ratios of inner cells surrounded by outer cells revealed that the fate of cells does not depend exclusively on the timing of their generation, but also on the number of cells generated in each wave of asymmetric division. Taking together, the observed regulatory mechanism adjusting the proportion of outer to inner cells within the embryo may be mediated by FGF signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app