JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Knockdown of thioredoxin-interacting protein ameliorates high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells.

Cellular Signalling 2013 December
Epithelial to mesenchymal transition (EMT) of tubular cells contributes to the renal accumulation of matrix protein that is associated with diabetic nephropathy. Both high glucose and transforming growth factor-β (TGF-β) are able to induce EMT in cell culture. In this study, we examined the role of the thioredoxin-interacting protein (TXNIP) on EMT induced by high glucose or TGF-β1 in HK-2 cells. EMT was assessed by the expression of α-smooth muscle actin (α-SMA) and E-cadherin and the induction of a myofibroblastic phenotype. High glucose (30mM) was shown to induce EMT at 72h. This was blocked by knockdown of TXNIP or antioxidant NAC. Meanwhile, we also found that knockdown of TXNIP or antioxidant NAC inhibited high glucose-induced generation of reactive oxygen species (ROS), phosphorylation of p38 MAPK and ERK1/2 and expression of TGF-β1. HK-2 cells that were exposed to TGF-β1 (4ng/ml) also underwent EMT. The expression of TXNIP gene and protein was increased in HK-2 cells treated with TGF-β1. Transfection with TXNIP shRNA was able to attenuate TGF-β1 induced-EMT. These results suggested that knockdown of TXNIP antagonized high glucose-induced EMT by inhibiting ROS production, activation of p38 MAPK and ERK1/2, and expression of TGF-β1, highlighting TXNIP as a potential therapy target for diabetic nephropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app