JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

CO2 adhesion on hydrated mineral surfaces.

Hydrated mineral surfaces in the environment are generally hydrophilic but in certain cases can strongly adhere CO2, which is largely nonpolar. This adhesion can significantly alter the wettability characteristics of the mineral surface and consequently influence capillary/residual trapping and other multiphase flow processes in porous media. Here, the conditions influencing adhesion between CO2 and homogeneous mineral surfaces were studied using static pendant contact angle measurements and captive advancing/receding tests. The prevalence of adhesion was sensitive to both surface roughness and aqueous chemistry. Adhesion was most widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nm. The incidence of adhesion increased with ionic strength and CO2 partial pressure. Adhesion was very rarely observed on surfaces equilibrated with brines containing strong acid or base. In advancing/receding contact angle measurements, adhesion could increase the contact angle by a factor of 3. These results support an emerging understanding of adhesion of, nonpolar nonaqueous phase fluids on mineral surfaces influenced by the properties of the electrical double layer in the aqueous phase film and surface functional groups between the mineral and CO2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app