Add like
Add dislike
Add to saved papers

Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks.

Metal-organic framework (MOF) NH2 -Uio-66(Zr) exhibits photocatalytic activity for CO2 reduction in the presence of triethanolamine as sacrificial agent under visible-light irradiation. Photoinduced electron transfer from the excited 2-aminoterephthalate (ATA) to Zr oxo clusters in NH2 -Uio-66(Zr) was for the first time revealed by photoluminescence studies. Generation of Zr(III) and its involvement in photocatalytic CO2 reduction was confirmed by ESR analysis. Moreover, NH2 -Uio-66(Zr) with mixed ATA and 2,5-diaminoterephthalate (DTA) ligands was prepared and shown to exhibit higher performance for photocatalytic CO2 reduction due to its enhanced light adsorption and increased adsorption of CO2 . This study provides a better understanding of photocatalytic CO2 reduction over MOF-based photocatalysts and also demonstrates the great potential of using MOFs as highly stable, molecularly tunable, and recyclable photocatalysts in CO2 reduction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app