Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Microstructural integrity of early- versus late-myelinating white matter tracts in medial temporal lobe epilepsy.

Epilepsia 2013 October
PURPOSE: Patients with medial temporal lobe epilepsy (MTLE) exhibit structural brain damage involving gray matter (GM) and white matter (WM). The mechanisms underlying tissue loss in MTLE are unclear and may be associated with a combination of seizure excitotoxicity and WM vulnerability. The goal of this study was to investigate whether late-myelinating WM tracts are more vulnerable to injury in MTLE compared with early myelinating tracts.

METHODS: Diffusional kurtosis imaging scans were obtained from 25 patients with MTLE and from 36 matched healthy controls. Diffusion measures from regions of interest (ROIs) for both late- and early myelinating WM tracts were analyzed. Regional Z-scores were computed with respect to normal controls to compare WM in early myelinating tracts versus late-myelinating tracts.

KEY FINDINGS: We observed that late-myelinating tracts exhibited a larger decrease in mean, axial, and radial kurtosis compared with early myelinating tracts. We also observed that the change in radial kurtosis was more pronounced in late-myelinating tracts ipsilateral to the side of seizure onset.

SIGNIFICANCE: These results suggest a developmentally based preferential susceptibility of late-myelinating WM tracts to damage in MTLE. Brain injury in epilepsy may be due to the pathologic effects of seizures in combination with regional WM vulnerability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app