Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Overexpression of E2F1 promotes tumor malignancy and correlates with TNM stages in clear cell renal cell carcinoma.

BACKGROUND: Transcription factor E2F1 exerts effects on many types of cancers. As an upstream regulator of a host of genes, E2F1 can trigger diverse aberrant transcription processes that may dominate malignancy. Clear cell renal cell carcinoma (ccRCC) is the most common subtype in renal cell carcinoma which displays high malignancy and has a shortage of biomarkers in clinics. Our study aimed to explore the function of E2F1 in ccRCC and its correlation with clinicopathological parameters.

METHODOLOGY/PRINCIPLE FINDINGS: Transcription factor E2F1 was mainly distributed in cancer cell nucleus and mRNA expression significantly increased in 72 cases of clear cell renal cell carcinoma (ccRCC) tissues compared with adjacent non-cancerous kidney tissues (p<0.001). The protein expression was consistent with mRNA expression. Further analysis in 92 cases indicated that E2F1 mRNA level expression was associated with the tumor pathologic parameters embracing diameter, Fuhrman tumor grade, pT stage, TNM stage grouping and macrovascular infiltration (MAVI). These surgical specimens had high grade tumors accompanied with an elevated E2F1 expression. Moreover, E2F1 transfection was found to contribute significantly to cancer cell proliferation, migration and invasion in vitro.

CONCLUSIONS/SIGNIFICANCE: Overexpression of E2F1 may be a key event in the local and vascular infiltration of ccRCC indicated by the activation of matrix metalloproteinase (MMP) 2 and MMP9. These findings highlighted the implication of E2F1's function in the metastatic process. Furthermore, the clinical relevance of E2F1 in ccRCC pointed to a potential new therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app