JOURNAL ARTICLE

Gait detection in children with and without hemiplegia using single-axis wearable gyroscopes

Nicole Abaid, Paolo Cappa, Eduardo Palermo, Maurizio Petrarca, Maurizio Porfiri
PloS One 2013, 8 (9): e73152
24023825
In this work, we develop a novel gait phase detection algorithm based on a hidden Markov model, which uses data from foot-mounted single-axis gyroscopes as input. We explore whether the proposed gait detection algorithm can generate equivalent results as a reference signal provided by force sensitive resistors (FSRs) for typically developing children (TD) and children with hemiplegia (HC). We find that the algorithm faithfully reproduces reference results in terms of high values of sensitivity and specificity with respect to FSR signals. In addition, the algorithm distinguishes between TD and HC and is able to assess the level of gait ability in patients. Finally, we show that the algorithm can be adapted to enable real-time processing with high accuracy. Due to the small, inexpensive nature of gyroscopes utilized in this study and the ease of implementation of the developed algorithm, this work finds application in the on-going development of active orthoses designed for therapy and locomotion in children with gait pathologies.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24023825
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"