JOURNAL ARTICLE

Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and fibroblasts

Alok Ranjan Nayak, T K Shajahan, A V Panfilov, Rahul Pandit
PloS One 2013, 8 (9): e72950
24023798
Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as [Formula: see text], the fibroblast resting-membrane potential, the fibroblast conductance [Formula: see text], and the MF gap-junctional coupling [Formula: see text]. Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as [Formula: see text], and [Formula: see text], and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity [Formula: see text] decreases as a function of [Formula: see text], for zero-sided and one-sided couplings; however, for two-sided coupling, [Formula: see text] decreases initially and then increases as a function of [Formula: see text], and, eventually, we observe that conduction failure occurs for low values of [Formula: see text]. In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling [Formula: see text] or [Formula: see text]. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24023798
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"