JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The RNA binding protein ESRP1 fine-tunes the expression of pluripotency-related factors in mouse embryonic stem cells.

In pluripotent stem cells, there is increasing evidence for crosstalk between post-transcriptional and transcriptional networks, offering multifold steps at which pluripotency can be controlled. In addition to well-studied transcription factors, chromatin modifiers and miRNAs, RNA-binding proteins are emerging as fundamental players in pluripotency regulation. Here, we report a new role for the RNA-binding protein ESRP1 in the control of pluripotency. Knockdown of Esrp1 in mouse embryonic stem cells induces, other than the well-documented epithelial to mesenchymal-like state, also an increase in expression of the core transcription factors Oct4, Nanog and Sox2, thereby enhancing self-renewal of these cells. Esrp1-depleted embryonic stem cells displayed impaired early differentiation in vitro and formed larger teratomas in vivo when compared to control embryonic stem cells. We also show that ESRP1 binds to Oct4 and Sox2 mRNAs and decreases their polysomal loading. ESRP1 thus acts as a physiological regulator of the finely-tuned balance between self-renewal and commitment to a restricted developmental fate. Importantly, both mouse and human epithelial stem cells highly express ESRP1, pinpointing the importance of this RNA-binding protein in stem cell biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app