Add like
Add dislike
Add to saved papers

Bayesian Frequentist hybrid Model wth Application to the Analysis of Gene Copy Number Changes.

Gene copy number (GCN) changes are common characteristics of many genetic diseases. Comparative genomic hybridization (CGH) is a new technology widely used today to screen the GCN changes in mutant cells with high resolution genome-wide. Statistical methods for analyzing such CGH data have been evolving. Existing methods are either frequentist's, or full Bayesian. The former often has computational advantage, while the latter can incorporate prior information into the model, but could be misleading when one does not have sound prior information. In an attempt to take full advantages of both approaches, we develop a Bayesian-frequentist hybrid approach, in which a subset of the model parameters is inferred by the Bayesian method, while the rest parameters by the frequentist's. This new hybrid approach provides advantages over those of the Bayesian or frequentist's method used alone. This is especially the case when sound prior information is available on part of the parameters, and the sample size is relatively small. Spatial dependence and false discovery rate are also discussed, and the parameter estimation is efficient. As an illustration, we used the proposed hybrid approach to analyze a real CGH data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app