Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression.

Breast cancers are thought to be organized hierarchically with a small number of breast cancer stem cells (BCSCs), able to regrow a tumor after sublethal treatment while their progeny lack this feature. Furthermore, BCSCs are highly resistant to conventional anticancer treatments. According to the cancer stem cell hypothesis, all cancer stem cells in a tumor have to be eliminated to achieve cancer cure. In this study we tested if targeted elimination of BCSCs leads to tumor regression. Specific targeting of BCSCs was achieved via a unique imaging and targeting system that relies on their low proteasome activity. In our system breast cancer cells stably express a fluorescent fusion protein, thymidine kinase-ZsGreen-cODC, which is readily degraded after translation in cells with normal 26S proteasome activity. However, cells with low proteasome activity accumulate this fluorescent fusion protein, thus allowing for their identification, tracking, and specific elimination. Here, we show that the activity of the 26S proteasome was significantly down-regulated in MCF-7, T47D, and MDA-MB-231 cultures enriched for BCSCs. Treatment with ganciclovir resulted in abrogation of sphere formation in vitro, and tumor regression in vivo, thus demonstrating that targeted elimination of BCSCs leads to loss of self-renewal in vitro and tumor regression in vivo. We conclude that specific targeting of BCSCs could be a useful strategy to improve treatment outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app