Add like
Add dislike
Add to saved papers

Seasonal and diurnal analysis of NO2 concentrations from a long-duration study conducted in Las Vegas, Nevada.

UNLABELLED: A study, conducted in Las Vegas, NV from mid-December 2008 to mid-December 2009 along an interstate highway, collected continuous and integrated samples for a wide variety of air pollutant species including NO2 and NO(x) associated with roadway traffic. This study examined long-term trends of NO2 and NO(x) in a near-road environment compared with previous near-road studies typically lasting only a few days to months. Study results revealed concentration gradients for NO2 and NO(x) with highest absolute and average concentrations at distances closest to the roadway throughout the year. Diurnal ambient temperature changes also influenced concentrations due to atmospheric chemistry activity as well as concentration changes due to seasonal effects. These concentration gradients were observed for all wind conditions; however under downwind conditions (winds from highway), the concentration gradients are more pronounced. Higher pollutant concentrations are generally observed during low wind speed conditions especially when those winds were from the highway. Understanding long-term, seasonal variability and levels of pollutant concentrations in the near-road environment is important to researchers and decision-makers evaluating exposures and risks for near-road populations; identifying locations for future near-road monitoring sites; and determining the viability and effectiveness of mitigation strategies.

IMPLICATIONS: Population exposures to traffic emissions near roads have led to heightened public health concerns and awareness of the long-term levels and variability of these air pollutants. Epidemiological studies have lead to improved understanding of the associated risks and health effects of near road air pollutant emissions. While short-term studies provide insights on near-road air quality, longer-term trends need to be understood, especially for reactive pollutants such as NO2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app