COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins.

Molecular Plant 2014 Februrary
Soil salinity is one of the most severe abiotic stress factors threatening agriculture worldwide. Hence, particular interest exists in unraveling mechanisms leading to salt tolerance and improved crop plant performance on saline soils. Barley is considered to be one of the most salinity-tolerant crops, but varying levels of tolerance are well characterized. A proteomic analysis of the roots of two contrasting cultivars (cv. Steptoe and cv. Morex) is presented. Young plants were exposed to a period of 1, 4, 7, or 10 d at 0, 100, or 150 mM NaCl. The root proteome was analyzed based on two-dimensional gel electrophoresis. A number of cultivar-specific and salinity stress-responsive proteins were identified. Mass spectrometry-based identification was successful for 74 proteins, and a hierarchical clustering analysis grouped these into five clusters based on similarity of expression profile. The rank product method was applied to statistically access the early and late responses, and this delivered a number of new candidate proteins underlying salinity tolerance in barley. Among these were some germin-like proteins, some pathogenesis-related proteins, and numerous as-yet uncharacterized proteins. Notably, proteins involved in detoxification pathways and terpenoid biosynthesis were detected as early responsive to salinity and may function as a means of modulating growth-regulating mechanisms and membrane stability via fine tuning of phytohormone and secondary metabolism in the root.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app