JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1α.

BACKGROUND: The present study tested the hypothesis that lifelong resveratrol (RSV) supplementation counteracts an age-associated decrease in skeletal muscle oxidative capacity through peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and that RSV combined with lifelong exercise training (EX) exerts additive effects through PGC-1α in mice.

METHODS: 3 month old PGC-1α whole body knockout (KO) and wild type (WT) littermate mice were placed in cages with or without running wheel and fed either standard chow or standard chow with RSV supplementation (4 g/kg food) for 12 months. Young (3 months of age), sedentary mice on standard chow served as young controls. A graded running performance test and a glucose tolerance test were performed 2 and 1 week, respectively, before euthanization where quadriceps and extensor digitorum longus (EDL) muscles were removed.

RESULTS: In PGC-1α KO mice, quadriceps citrate synthase (CS) activity, mitochondrial (mt)DNA content as well as pyruvate dehydrogenase (PDH)-E1α, cytochrome (Cyt) c and vascular endothelial growth factor (VEGF) protein content were 20-75% lower and, EDL capillary-to-fiber (C:F) ratio was 15-30% lower than in WT mice. RSV and/or EX had no effect on the C:F ratio in EDL. CS activity (P=0.063) and mtDNA content (P=0.013) decreased with age in WT mice, and CS activity, mtDNA content, PDH-E1α protein and VEGF protein increased ~1.5-1.8-fold with lifelong EX in WT, but not in PGC-1α KO mice, while RSV alone had no significant effect on these proteins.

CONCLUSION: Lifelong EX increased activity/content of oxidative proteins, mtDNA and angiogenic proteins in skeletal muscle through PGC-1α, while RSV supplementation alone had no effect. Combining lifelong EX and RSV supplementation had no additional effect on skeletal muscle oxidative and angiogenic proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app