JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α.

Aged skeletal muscle demonstrates declines in muscle mass and deterioration of mitochondrial content and function. Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) plays an important role in promoting muscle mitochondrial biogenesis in response to exercise training, but its role in senescent muscle is not clear. In the present study we hypothesize that a downregulation of the PGC-1α signaling pathway contributes to mitochondrial deterioration in aged muscle whereas endurance training ameliorates the deficits. Three groups of Fischer 344/BNF1 rats were used: young, sedentary (Y, 4 months); old, sedentary (O, 22 months); and old trained (OT, 22 months), subjected to treadmill running at 17.5 m/min, 10% grade for 45 min/day, 5 days/week for 12-weeks. PGC-1α mRNA and nuclear PGC-1α protein content in the soleus muscle were both decreased in O vs. Y rats, whereas OT rats showed a 2.3 and 1.8-fold higher PGC-1α content than O and Y rats, respectively (P<0.01). Mitochondrial transcription factor A (Tfam), cytochrome c (Cyt c) and mitochondrial (mt) DNA contents were significantly decreased in O vs. Y rats, but elevated by 2.2 (P<0.01), 1.4 (P<0.05) and 2.4-fold (P<0.01), respectively, in OT vs. O rats. In addition, Tfam and mtDNA showed 1.6 and 1.8-fold (P<0.01) higher levels, respectively, in OT vs. Y rats. These adaptations were accompanied by significant increases in the expression of the phosphorylated form of AMP-activated kinase (AMPK) (P<0.01), p38 mitogen-activated kinase (MAPK) (P<0.05) and silent mating type information regulator 2 homolog 1 (SIRT1) (P<0.01) in OT rats. Furthermore, OT rats showed great levels of phosphorylation in cAMP responsive element binding protein (p-CREB) and DNA binding compared to O and Y rats. These data indicate that endurance training can attenuate aging-associated decline in mitochondrial protein synthesis in skeletal muscle partly due to upregulation of PGC-1α signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app