EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

The MaSuRCA genome assembler.

Bioinformatics 2013 November 2
MOTIVATION: Second-generation sequencing technologies produce high coverage of the genome by short reads at a low cost, which has prompted development of new assembly methods. In particular, multiple algorithms based on de Bruijn graphs have been shown to be effective for the assembly problem. In this article, we describe a new hybrid approach that has the computational efficiency of de Bruijn graph methods and the flexibility of overlap-based assembly strategies, and which allows variable read lengths while tolerating a significant level of sequencing error. Our method transforms large numbers of paired-end reads into a much smaller number of longer 'super-reads'. The use of super-reads allows us to assemble combinations of Illumina reads of differing lengths together with longer reads from 454 and Sanger sequencing technologies, making it one of the few assemblers capable of handling such mixtures. We call our system the Maryland Super-Read Celera Assembler (abbreviated MaSuRCA and pronounced 'mazurka').

RESULTS: We evaluate the performance of MaSuRCA against two of the most widely used assemblers for Illumina data, Allpaths-LG and SOAPdenovo2, on two datasets from organisms for which high-quality assemblies are available: the bacterium Rhodobacter sphaeroides and chromosome 16 of the mouse genome. We show that MaSuRCA performs on par or better than Allpaths-LG and significantly better than SOAPdenovo on these data, when evaluated against the finished sequence. We then show that MaSuRCA can significantly improve its assemblies when the original data are augmented with long reads.

AVAILABILITY: MaSuRCA is available as open-source code at ftp://ftp.genome.umd.edu/pub/MaSuRCA/. Previous (pre-publication) releases have been publicly available for over a year.

CONTACT: [email protected].

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app