Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway.

The induction of senescence for cancer treatment has provoked considerable interest recently. Metformin, a first-line drug for diabetes mellitus type 2, appears to be associated with a lower risk and improved outcomes in hepatocellular carcinoma (HCC). The mechanism involved in function of metformin in HCC is poorly understood. We show that low doses of metformin induced hepatoma cell senescence characterized by accumulation of senescence-associated β-galactosidase activity (SA-β-gal) and the senescence marker Dec1, whereas the higher doses initiated apoptotic cell death. Metformin-induced senescence was accompanied by enhanced phosphorylation levels of AMP-activated protein kinase (AMPK) and its downstream target acetyl-CoA carboxylase (ACC). The expression of acetylated p53 at Lys382 (Ac-p53) and p21 was also increased, while phosphorylation of p53 at Ser15 (p-p53), p53, p16 and pRB was rarely altered after metformin treatment. Moreover, inhibition of AMPK decreased p-AMPK, p-ACC, Ac-p53 and p21 expression, diminished SA-β-gal staining and restored hepatoma cell proliferation. In addition, p53 siRNA transfection attenuated metformin-induced SA-β-gal staining. Intriguingly, co-expression of SIRT1 and p53 dramatically reduced the levels of Ac-p53, however, low doses of metformin treatment partially reversed the effect of SIRT1 on p53 acetylation and elevated SA-β-gal activity. These observations indicate that activation of the AMPK pathway promotes senescence in hepatoma cells exposed to low concentrations of metformin in a p53-dependent manner. Further, low doses of metformin may have the potential to be used as an adjuvant to HCC therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app