JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects.

Science Signaling 2013 August 28
Neural tube defects result from failure to completely close neural tubes during development. Maternal diabetes is a substantial risk factor for neural tube defects, and available evidence suggests that the mechanism that links hyperglycemia to neural tube defects involves oxidative stress and apoptosis. We demonstrated that maternal hyperglycemia correlated with activation of the apoptosis signal-regulating kinase 1 (ASK1) in the developing neural tube, and Ask1 gene deletion was associated with reduced neuroepithelial cell apoptosis and development of neural tube defects. ASK1 activation stimulated the activity of the transcription factor FoxO3a, which increased the abundance of the apoptosis-promoting adaptor protein TRADD, leading to activation of caspase 8. Hyperglycemia-induced apoptosis and the development of neural tube defects were reduced with genetic ablation of either FoxO3a or Casp8 or inhibition of ASK1 by thioredoxin. Examination of human neural tissues affected by neural tube defects revealed increased activation or abundance of ASK1, FoxO3a, TRADD, and caspase 8. Thus, activation of an ASK1-FoxO3a-TRADD-caspase 8 pathway participates in the development of neural tube defects, which could be prevented by inhibiting intermediates in this cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app