JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transcriptome analysis and SNP identification in SCC of horn in (Bos indicus) Indian cattle.

Gene 2013 November 2
Single Nucleotide Polymorphisms (SNPs) have become the marker of choice for genome wide association studies. In order to provide the best genome coverage for the analysis of disease, production and performance traits, a large number of relatively evenly distributed SNPs are needed. The main objective of present work was to identify large numbers of gene-associated SNPs using high-throughput sequencing in squamous cell carcinoma of horn. RNA-seq analysis was conducted on 2 tissues viz. Horn Cancer (HC) and Horn Normal (HN) in Kankrej breed of cattle. A total of 909,362 reads with average read length of 405 bp for HC and 583,491 reads with average read length of 411 bp for HN were obtained. We found 9532 and 7065 SNPs as well as 1771 and 1172 Indels in HC and HN, respectively, from which, 7889 SNPs and 1736 Indels were uniquely present in HC, 5886 SNPs and 1146 Indels were uniquely present in HN and reported first time in Bos indicus, whereas the rest are already reported in Bos taurus dbSNP database. The gene-associated SNPs and Indels were high in upregulated genes of HC as compared to HN. Analysis of differentially expressed genes was identified, these genes are involved in regulation of cell proliferation, apoptosis, gene transcription, cell survival and metabolism through various metabolic pathways. The result of transcriptome expression profiling was validated using Real Time quantitative PCR in nine randomly selected genes. We identified numbers aberrant signaling pathways responsible for carcinogenesis in HC which are also commonly altered in squamous cell carcinoma (SCC) of lung in human being. We conclude that a large number of altered genes and dysfunction of multiple pathways are involved in the development of Horn Cancer. The present findings contribute to theoretical information for further screening of genes and identification of markers for early diagnosis of HC as well as SNPs identified in this report provide a much needed resource for genetic studies in B. indicus and shall contribute to the development of a high density SNP array. Validation and testing of these SNPs using SNP arrays will form the material basis for gene associated SNPs in HC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app