JOURNAL ARTICLE

The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis

Stefano Menini, Carla Iacobini, Carlo Ricci, Claudia Blasetti Fantauzzi, Laura Salvi, Carlo M Pesce, Michela Relucenti, Giuseppe Familiari, Maurizio Taurino, Giuseppe Pugliese
Cardiovascular Research 2013 December 1, 100 (3): 472-80
23975852

AIMS: Vascular calcification correlates with inflammation and plaque instability in a dual manner, depending on the spotty/granular (micro) or sheet-like/lamellated (macro) pattern of calcification. Modified lipoproteins trigger both inflammation and calcification via receptors for advanced lipoxidation/glycation endproducts (ALEs/AGEs). This study compared the roles of galectin-3 and receptor for AGEs (RAGE), two ALEs/AGEs-receptors with diverging effects on inflammation and bone metabolism, in the process of vascular calcification.

METHODS AND RESULTS: We evaluated galectin-3 and RAGE expression/localization in 62 human carotid plaques and its relation to calcification pattern, plaque phenotype, and markers of inflammation and vascular osteogenesis; and the effect of galectin-3 ablation and/or exposure to an ALE/AGE on vascular smooth muscle cell (VSMC) osteogenic differentiation. While RAGE co-localized with inflammatory cells in unstable regions with microcalcification, galectin-3 was expressed also by VSMCs, especially in macrocalcified areas, where it co-localized with alkaline phosphatase. Expression of galectin-3 and osteogenic markers was higher in macrocalcified plaques, whereas the opposite occurred for RAGE and inflammatory markers. Galectin-3-deficient VSMCs exhibited defective osteogenic differentiation, as shown by altered expression of osteogenic transcription factors and proteins, blunted activation of pro-osteoblastogenic Wnt/β-catenin signalling and proliferation, enhanced apoptosis, and disorganized mineralization. These abnormalities were associated with RAGE up-regulation, but were only in part prevented by RAGE silencing, and were partially mimicked or exacerbated by treatment with an AGE/ALE.

CONCLUSION: These data indicate a novel molecular mechanism by which galectin-3 and RAGE modulate in divergent ways, not only inflammation, but also vascular osteogenesis, by modulating Wnt/β-catenin signalling, and independently of ALEs/AGEs.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23975852
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"