Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The miRNA let-7a1 inhibits the expression of insulin-like growth factor 1 receptor (IGF1R) in prostate cancer PC-3 cells.

Reduced microRNA (miRNA) let-7a expression and the activation of insulin-like growth factor-1 receptor (IGF1R) signalling are both involved in prostate cancer and progression. In the present study, we demonstrated that the growth inhibitory effect of let-7a1 is directly related to targeting IGF1R gene expression in PC-3 cells. TargetScan predicted three potential target sites (T1, T2 and T3) of let-7a in the 3' untranslational region (3' UTR) of IGF1R mRNA. Real-time PCR, Western blot and luciferase reporter assays were used to detect the effects of let-7a1 overexpression or let-7a1 inhibitor on the IGF1R gene expression in PC-3 cells. The results indicated that let-7a1 could inhibit IGF1R expression by directly targeting the T1 and T2 sites in the 3' UTR of the IGF1R mRNA. We then used RT-PCR, luciferase reporter assays, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl-2H-tetrazolium bromide (MTT) assay, flow cytometry and Hoechst 33342 staining to examine whether let-7a1-mediated inhibition of IGF1R expression also affects the IGF1R-mediated signalling events, including Elk1 activity and c-fos gene expression, proliferation, apoptosis and cell cycle. We demonstrated that let-7a1-mediated IGF1R downregulation was accompanied by attenuation of Elk1 activity and c-fos expression, inhibition of cell proliferation, enhanced apoptosis and cell cycle arrest, and that loss function of let-7a1 via inhibition can upregulate IGF1R accompanied by an increase of Elk1 activity and c-fos expression, thereby enhancing cell proliferation. Altogether, these findings suggest that let-7a may be novel therapeutic candidate for prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app