Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase.

The histone lysine demethylase KDM5B plays key roles in gene repression by demethylating trimethylated lysine 4 of histone H3 (H3K4me3), a modification commonly found at the promoter region of actively transcribed genes. KDM5B is known to regulate the expression of genes involved in cell cycle progression; however, little is known about the post-translational modifications that regulate KDM5B. Herein, we report that KDM5B is SUMOylated at lysine residues 242 and 278 and that the ectopic expression of the hPC2 SUMO E3 ligase enhances this SUMOylation. Interestingly, the levels of KDM5B and its SUMOylated forms are regulated during the cell cycle. KDM5B is modulated by RNF4, an E3 ubiquitin ligase that targets SUMO-modified proteins to proteasomal degradation. Digital gene expression analyses showed that cells expressing the SUMOylation-deficient KDM5B harbor repressed mRNA expression profiles of cell cycle and DNA repair genes. Chromatin immunoprecipitations confirmed some of these genes as KDM5B targets, as they displayed reduced H3K4me3 levels in cells ectopically expressing KDM5B. We propose that SUMOylation by hPC2 regulates the activity of KDM5B.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app