Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Assembler for de novo assembly of large genomes.

Assembling a large genome using next generation sequencing reads requires large computer memory and a long execution time. To reduce these requirements, we propose an extension-based assembler, called JR-Assembler, where J and R stand for "jumping" extension and read "remapping." First, it uses the read count to select good quality reads as seeds. Second, it extends each seed by a whole-read extension process, which expedites the extension process and can jump over short repeats. Third, it uses a dynamic back trimming process to avoid extension termination due to sequencing errors. Fourth, it remaps reads to each assembled sequence, and if an assembly error occurs by the presence of a repeat, it breaks the contig at the repeat boundaries. Fifth, it applies a less stringent extension criterion to connect low-coverage regions. Finally, it merges contigs by unused reads. An extensive comparison of JR-Assembler with current assemblers using datasets from small, medium, and large genomes shows that JR-Assembler achieves a better or comparable overall assembly quality and requires lower memory use and less central processing unit time, especially for large genomes. Finally, a simulation study shows that JR-Assembler achieves a superior performance on memory use and central processing unit time than most current assemblers when the read length is 150 bp or longer, indicating that the advantages of JR-Assembler over current assemblers will increase as the read length increases with advances in next generation sequencing technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app