JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Novel bis[5-(fluoren-2-yl)thiophen-2-yl]benzothiadiazole end-capped with carbazole dendrons as highly efficient solution-processed nondoped red emitters for organic light-emitting diodes.

A series of novel red-emitting bis[5-(fluoren-2-yl)thiophen-2-yl]benzothiadiazole-cored dendrimers containing carbazole dendrons up to the third generation are synthesized. Their photophysical, thermal, electrochemical, and electroluminescent properties as nondoped solution-processed red light-emitters for OLEDs are investigated. By using carbazole dendrons as the end caps, we are able to reduce the crystallization and retain the high emissive ability of a planar fluorescent core in the solid state as well as improve the thermal stability of the material. These dendrimers show a bright-red fluorescence and can form morphologically stable amorphous thin films with glass-transition temperatures as high as 283 °C. Simple structured solution-processed OLEDs using these materials as hole-transporting nondoped emitters and BCP as the hole-blocking layer emit a stable red color around 622-645 nm, with high luminance efficiencies (up to 4.80 cd A(-1) at 1.2 mA cm(-2)) and CIE coordinates of (0.65, 0.33), which are close to the pure red color.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app