Add like
Add dislike
Add to saved papers

Hierarchial coassembly of a cyanine dye in poly(vinyl alcohol) fibrous films by electrospinning.

We report molecular aggregate formation of TTBC (1,1',3,3'-tetraethyl-5,5',6,6'-tetrachlorobenzimidazolocarbocyanine) in submicrometer-sized PVA (poly(vinyl alcohol)) fibers by electrospinning. The formation of the molecular aggregate is examined by solution and instrumental parameters of electrospinning. The precursor solution of PVA/TTBC, in the range of 0.016-0.065 wt % is subjected to electrospinning under an electrical field ranging from 0.95 to 1.81 kV cm(-1). Both randomly deposited and uniaxially aligned fibers are achieved by using two parallel-positioned metal strips as counter electrode. Photoluminescence and polarized Fourier transform infrared spectroscopies are employed to determine spectral properties of the fibers. H-aggregates are formed within the electrospun fibers, regardless of their alignment, and H- and J-type aggregates coexist in the alternative spin-coated and the cast films. A strongly polarized photoluminescence emission is observed in the direction of uniaxially aligned fibers as a result of the orientation of the H-aggregates along the fiber axis. We demonstrate that electrospinning is a process capable of forming and orienting TTBC aggregates during the structural development of the polymer/dye nanofibers. These fibrous films may potentially find applications in optics and electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app