JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MicroRNA-106b induces mitochondrial dysfunction and insulin resistance in C2C12 myotubes by targeting mitofusin-2.

MicroRNA-106b (miR-106b) is reported to correlate closely with skeletal muscle insulin resistance and type 2 diabetes. The aim of this study was to identify an mRNA targeted by miR-106b which regulates skeletal muscle insulin sensitivity. MiR-106b was found to target the 3' untranslated region (3' UTR) of mitofusin-2 (Mfn2) through miR-106b binding sites and to downregulate Mfn2 protein abundance at the post-transcriptional level by luciferase activity assay combined with mutational analysis and immunoblotting. Overexpression of miR-106b resulted in mitochondrial dysfunction and insulin resistance in C2C12 myotubes. MiR-106b was increased in insulin-resistant cultured C2C12 myotubes induced by TNF-α, and accompanied by increasing Mfn2 level, miR-106b loss of function improved mitochondrial function and insulin sensitivity impaired by TNF-α in C2C12 myotubes. In addition, both overexpression and downregulation of miR-106b upregulated peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and estrogen-related receptor (ERR)-α expression. MiR-106b targeted Mfn2 and regulated skeletal muscle mitochondrial function and insulin sensitivity. Therefor, Inhibition of miR-106b may be a potential new strategy for treating insulin resistance and type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app