Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Association between urinary levels of bisphenol-A and estrogen metabolism in Korean adults.

Bisphenol-A (BPA) possesses estrogenic properties both in vitro and in vivo as an endocrine disrupting chemical. Humans experience a long-term and cumulative exposure to BPA. BPA was detectable in 97.3% of 1904 urine specimens from Korean adults. We investigated urinary estrogen concentrations in subjects with low and high BPA concentrations and its possible association with estrogen metabolism. Urine samples were collected from a high BPA concentration group (BPA-H; n=100, 11.05 ± 20.47 μg/g creatinine) and a low BPA concentration group (BPA-L; n=100, 0.70 ± 0.22 μg/g creatinine) from Korea Biomonitoring Program of Hazardous Materials Survey 2009-2010. Urinary estrogens were enzymatically hydrolyzed, extracted, and then derivatized for quantitative analysis by gas chromatography-mass spectrometry. Estrogen levels were higher in the BPA-H group than in the BPA-L group. Concentrations of estrone, 17β-estradiol, and their hydroxylated metabolites in both men and women were significantly higher in the BPA-H group than in the BPA-L group (p<0.04). Furthermore, in the BPA-H group, estrogen metabolism to 4-hydroxy-estrone and 4-hydroxy-17β-estradiol was more active than that to 2-hydroxy-estrone and 2-hydroxy-17β-estradiol. Although single measurement and/or single spot urine samples limit the measurement of long-term exposure to BPA, we found significant differences of estrogen metabolism in the BPA-H and the BPA-L groups. The increase of hydroxyestrogens, especially 4-hydroxyestrogens, can be an important factor resulting negative effects of prolonged exposure to BPA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app