Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spatial variations in polycyclic aromatic hydrocarbons concentrations at surface sediments from the Cyprus (Eastern Mediterranean): relation to ecological risk assessment.

The objective of the present study was to evaluate the distribution, sources, origins, and environmental risk assessment of polycyclic aromatic hydrocarbons (16 US EPA priority pollutants) pollution in 23 surface sediments from Cyprus coast. The mean total polycyclic aromatic hydrocarbons (PAHs) concentrations in the sediments from Gemi Konagi, Girne and Gazi Magusa areas were found 47, 52 and 50 ng/g, respectively. Molecular ratios and principle component analysis indicated that PAH pollution originated mainly from fossil sources, with higher pyrolytic contributions. The 2-3 ring PAHs were dominant in Cyprus sediments. Concentrations of PAHs observed in this study were compared with available soil quality guidelines and the concentrations were lower than the guideline values. The guideline values suggested that the Cyprus sediments were likely to be not contaminated by toxic PAH compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app