Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.)

Min Wang, Qinglian Wang, Baohong Zhang
Gene 2013 November 1, 530 (1): 26-32
MicroRNAs (miRNAs) are an important gene regulator, controlling almost all biological and metabolic processes, in both plants and animals. In this study, we investigated the effect of drought and salinity stress on the expression of miRNAs and their targets in cotton (Gossypium hirsutum L.). Our results show that the expression change of miRNAs and their targets were dose-dependent and tissue-dependent under salinity and drought conditions. The expression of miRNAs in leaf was down-regulated under higher salinity stress while shows variable patterns in other conditions. The highest fold-changes of miRNAs were miR398 in roots with 28.9 fold down-regulation under 0.25% NaCl treatment and miR395 in leaves with 7.6 fold down-regulation under 1% PEG treatment. The highest up-regulation of miRNA targets was AST in roots with 4.7 fold-change under 2.5% PEG and the gene with highest down-regulation was CUC1 in leaves with 25.6 fold-change under 0.25% NaCl treatment. Among seven miRNA-target pairs we studied, five pairs, miR156-SPL2, miR162-DCL1, miR159-TCP3, miR395-APS1 and miR396-GRF1, show significant regulation relationship in roots and leaves under salinity stress concentration.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"