JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Pulmonary fibroblasts: an in vitro model of emphysema. Regulation of elastin gene expression.

Disruption and degradation of interstitial elastic fibers are significant characteristics of pulmonary emphysema. In order to examine the responses of elastogenic cells to the conditions mimicking degradation of interstitial pulmonary elastin, rat pulmonary fibroblast cultures were used as an in vitro model. Second passage fibroblasts were divided into two different environmental situations to represent cells adjacent to and remote from the site of elastase-digested matrix. One set of cell cultures was briefly digested with pancreatic elastase. The resultant digest was then added back incrementally to the medium of elastase-digested cell cultures and to the medium of a second set of undigested cultures. Both sets of cell cultures remained viable and metabolically active during these treatments (96 h of incubation) as judged by protein synthesis, cell number, and steady-state levels of beta-actin mRNA. However, the two sets of cultures exhibited opposite responses in elastin gene expression with addition of increasing amounts of the elastase digest. The elastase-digested cultures exhibited a 200% increase in extractable soluble elastin and a 186% increase in tropoelastin mRNA with the addition of increasing amounts of the elastase digest to the medium. Conversely, the amount of soluble elastin recovered from the undigested cultures decreased 75%, and the steady-state level of tropoelastin mRNA decreased 63%. Soluble elastin peptides generated from oxalic acid treatment of purified elastin were shown to decrease tropoelastin mRNA in undigested cell cultures in the same manner as the elastase digest. Based on these data, we propose that pulmonary fibroblast elastin gene expression can be controlled coordinately by the state of the extracellular matrix and solubilized peptides derived from that matrix. Such integrated regulation may serve to localize elastin repair mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app