In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TGF-β2-induced invadosomes in human trabecular meshwork cells.

Primary open-angle glaucoma (POAG) is a leading cause of blindness due to chronic degeneration of retinal ganglion cells and their optic nerve axons. It is associated with disturbed regulation of intraocular pressure, elevated intraocular levels of TGF-β2, aberrant extracellular matrix (ECM) deposition and increased outflow resistance in the trabecular meshwork (TM). The mechanisms underlying these changes are not fully understood. Cell-matrix interactions have a decisive role in TM maintenance and it has been suggested that TGF-β-induced inhibition of matrix metalloproteases may drive aberrant ECM deposition in POAG. Invadopodia and podosomes (invadosomes) are distinct sites of cell-matrix interaction and localized matrix-metalloprotease (MMP) activity. Here, we report on the effects of TGF-β2 on invadosomes in human trabecular meshwork cells. Human TM (HTM) cells were derived from donor tissue and pretreated with vehicle or TGF-β2 (2 ng/ml) for 3d. Invadosomes were studied in ECM degradation assays, protein expression and MMP-2 activity were assessed by western blot and zymography and ECM protein transcription was detected by RT-qPCR. HTM cells spontaneously formed podosomes and invadopodia as detected by colocalization of Grb2 or Nck1 to sites of gelatinolysis. Pretreatment with TGF-β2 enhanced invadosomal proteolysis and zymographic MMP-2 activity as well as MMP-2, TIMP-2 and PAI-1 levels in HTM cell culture supernatants. Rho-kinase inhibition by H1152 blocked the effects of TGF-β2. Concomitant transcription of fibronectin and collagens-1, -4 and -6 was increased by TGF-β2 and fibrillar fibronectin deposits were observed in areas of invadosomal ECM remodelling. In contrast to a current hypothesis, our data indicate that TGF-β2 induces an active ECM remodelling process in TM cells, characterized by concurrent increases in localized ECM digestion and ECM expression, rather than a mere buildup of material due to a lack of degradation. Invadosomal cell adhesion and signaling may thus have a role in POAG pathophysiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app