JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development of molecular resources for an intertidal clam, Sinonovacula constricta, using 454 transcriptome sequencing.

BACKGROUND: The razor clam Sinonovacula constricta is a benthic intertidal bivalve species with important commercial value. Despite its economic importance, knowledge of its transcriptome is scarce. Next generation sequencing technologies offer rapid and efficient tools for generating large numbers of sequences, which can be used to characterize the transcriptome, to develop effective molecular markers and to identify genes associated with growth, a key breeding trait.

RESULTS: Total RNA was isolated from the mantle, gill, liver, siphon, gonad and muscular foot tissues. High-throughput deep sequencing of S. constricta using 454 pyrosequencing technology yielded 859,313 high-quality reads with an average read length of 489 bp. Clustering and assembly of these reads produced 16,323 contigs and 131,346 singletons with average lengths of 1,376 bp and 458 bp, respectively. Based on transcriptome sequencing, 14,615 sequences had significant matches with known genes encoding 147,669 predicted proteins. Subsequently, previously unknown growth-related genes were identified. A total of 13,563 microsatellites (SSRs) and 13,634 high-confidence single nucleotide polymorphism loci (SNPs) were discovered, of which almost half were validated.

CONCLUSION: De novo sequencing of the razor clam S. constricta transcriptome on the 454 GS FLX platform generated a large number of ESTs. Candidate growth factors and a large number of SSRs and SNPs were identified. These results will impact genetic studies of S. constricta.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app