JOURNAL ARTICLE

Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: the role of IL-6 signaling and Nrf2/AKR1C axis identification

Chih-Cheng Chen, Chia-Bao Chu, Ko-Jiunn Liu, Chi-Ying F Huang, Jang-Yang Chang, Wen-Yu Pan, Huang-Hui Chen, Yun-Hsia Cheng, Kuan-Der Lee, Miao-Fen Chen, Ching-Chuan Kuo, Li-Tzong Chen
Biochemical Pharmacology 2013 October 1, 86 (7): 872-87
23933386
Oxaliplatin treatment is a mainstay of treatment for advanced gastrointestinal tract cancer, but the underlying mechanisms of acquired oxaliplatin resistance remain largely obscured. We previously demonstrated that increased DNA repair capacity and copper-transporting ATPase 1 (ATP7A) level contributed to oxaliplatin resistance in the human gastric carcinoma cell line TSGH-S3 (S3). In the present study, we applied gene array technology to identify additional resistance factors in S3 cells. We found that interleukin-6 (IL-6), aldo-keto reductase 1C1 (AKR1C1), and AKR1C3 are the top 3 upregulated genes in S3 cells when compared with parent TSGH cells. Despite a higher level of endogenous IL-6 in S3, IL-6 receptor (IR-6R, gp-80, and gp-130) levels were similar between TSGH and S3 cells. The addition of exogenous IL-6, IL-6 targeted siRNA, or neutralizing antibodies neither affected Stat3 activation, a downstream target of IL-6, nor changed oxaliplatin sensitivity in S3 cells. However, manipulation of AKR1C activity with siRNA or AKR1C inhibitors significantly reversed oxaliplatin resistance. AKR1Cs are classical antioxidant response element (ARE) genes that can be transcriptionally upregulated by nuclear factor erythroid 2-related factor 2 (Nrf2). Knockdown of Nrf2 not only decreased the levels of AKR1C1, AKR1C2, and AKR1C3 mRNA and protein but also reversed oxaliplatin resistance in S3 cells. Taken together, these results suggest that activation of the Nrf2/AKR1C axis may contribute to oxaliplatin resistance in S3 cells but that the IL-6 signaling pathway did not contribute to resistance. Manipulation of Nrf2/AKR1Cs activity may be useful for management of oxaliplatin-refractory gastric cancers.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23933386
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"