The lumbar intervertebral disc: from embryonic development to degeneration

Pauline Colombier, Johann Clouet, Olivier Hamel, Laurent Lescaudron, Jérôme Guicheux
Joint, Bone, Spine: Revue du Rhumatisme 2014, 81 (2): 125-9
Lumbar intervertebral discs (IVDs) are prone to degeneration upon skeletal maturity. In fact, this process could explain approximately 40% of the cases of low back pain in humans. Despite the efficiency of pain-relieving treatments, the scientific community seeks to develop innovative therapeutic approaches that might limit the use of invasive surgical procedures (e.g., spine fusion and arthroplasty). As a prerequisite to the development of these strategies, we must improve our fundamental knowledge regarding IVD pathophysiology. Recently, several studies have demonstrated that there is a singular phenotype associated with Nucleus pulposus (NP) cells, which is distinct from that of articular chondrocytes. In parallel, recent studies concerning the origin and development of NP cells, as well as their role in intervertebral tissue homeostasis, have yielded new insights into the complex mechanisms involved in disc degeneration. This review summarizes our current understanding of IVD physiology and the complex cell-mediated processes that contribute to IVD degeneration. Collectively, these recent advances could inspire the scientific community to explore new biotherapeutic strategies.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"