JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Predicting reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron and its implications for environmental risk assessment.

The reductive debromination of polybrominated diphenyl ethers (PBDEs) by nanoscale zerovalent iron (nZVI) has proven to be a successful remediation approach. This study simulates the congener profiles and overall ecotoxicological impact of PBDE debromination by nZVI. The relationship between the calculated redox potential values and PBDE debromination rates was sufficiently strong to generate a satisfactory predictive capacity, which was further used to develop a quantitative structure-activity relationship (QSAR) model for the determination of the PBDE debromination patterns and dominant pathways. The predicted results of deca-BDE debromination showed that it would completely disappear within 30 days, but its lower brominated products, particularly tri- to penta-homologues, could exist in the environment even after 5 years. Formation and accumulation of more toxic, low brominated congeners through deca-BDE debromination suggest that deca-BDE may pose prolonged environmental risks. Changes in the toxic equivalent (TEQ) values during deca-BDE debromination parallel the occurrence and transformation of specific low brominated congeners with dioxin-like potency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app