OPEN IN READ APP
JOURNAL ARTICLE

A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses

Evangelos Kontopantelis, David A Springate, David Reeves
PloS One 2013, 8 (7): e69930
23922860

BACKGROUND: Heterogeneity has a key role in meta-analysis methods and can greatly affect conclusions. However, true levels of heterogeneity are unknown and often researchers assume homogeneity. We aim to: a) investigate the prevalence of unobserved heterogeneity and the validity of the assumption of homogeneity; b) assess the performance of various meta-analysis methods; c) apply the findings to published meta-analyses.

METHODS AND FINDINGS: We accessed 57,397 meta-analyses, available in the Cochrane Library in August 2012. Using simulated data we assessed the performance of various meta-analysis methods in different scenarios. The prevalence of a zero heterogeneity estimate in the simulated scenarios was compared with that in the Cochrane data, to estimate the degree of unobserved heterogeneity in the latter. We re-analysed all meta-analyses using all methods and assessed the sensitivity of the statistical conclusions. Levels of unobserved heterogeneity in the Cochrane data appeared to be high, especially for small meta-analyses. A bootstrapped version of the DerSimonian-Laird approach performed best in both detecting heterogeneity and in returning more accurate overall effect estimates. Re-analysing all meta-analyses with this new method we found that in cases where heterogeneity had originally been detected but ignored, 17-20% of the statistical conclusions changed. Rates were much lower where the original analysis did not detect heterogeneity or took it into account, between 1% and 3%.

CONCLUSIONS: When evidence for heterogeneity is lacking, standard practice is to assume homogeneity and apply a simpler fixed-effect meta-analysis. We find that assuming homogeneity often results in a misleading analysis, since heterogeneity is very likely present but undetected. Our new method represents a small improvement but the problem largely remains, especially for very small meta-analyses. One solution is to test the sensitivity of the meta-analysis conclusions to assumed moderate and large degrees of heterogeneity. Equally, whenever heterogeneity is detected, it should not be ignored.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
23922860
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"