Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition.

The molecular basis of epithelial-mesenchymal transition (EMT) functions as a potential therapeutic target for breast cancer because EMT may endow breast tumor-initiating cells with stem-like characteristics and enable the dissemination of breast cancer cells. We have recently verified the antitumor activity of 3,5,4'-trimethoxystilbene (MR-3), a naturally methoxylated derivative of resveratrol, in colorectal cancer xenografts via an induction of apoptosis. The effect of MR-3 on EMT and the invasiveness of human MCF-7 breast adenocarcinoma cell line were also explored. We found that MR-3 significantly increased epithelial marker E-cadherin expression and triggered a cobblestone-like morphology of MCF-7 cells, while reciprocally decreasing the expression of mesenchymal markers, such as snail, slug, and vimentin. In parallel with EMT reversal, MR-3 downregulated the invasion and migration of MCF-7 cells. Exploring the action mechanism of MR-3 on the suppression of EMT and invasion indicates that MR-3 markedly reduced the expression and nuclear translocation of β-catenin, accompanied with the downregulation of β-catenin target genes and the increment of membrane-bound β-catenin. These results suggest the involvement of Wnt/β-catenin signaling in the MR-3-induced EMT reversion of MCF-7 cells. Notably, MR-3 restored glycogen synthase kinase-3β activity by inhibiting the phosphorylation of Akt, the event required for β-catenin destruction via a proteasome-mediated system. Overall, these findings indicate that the anti-invasive activity of MR-3 on MCF-7 cells may result from the suppression of EMT via down-regulating phosphatidylinositol 3-kinase (PI3K)/AKT signaling, and consequently, β-catenin nuclear translocation. These occurrences ultimately lead to the blockage of EMT and the invasion of breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app