JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pro-apoptotic signaling induced by photo-oxidative ER stress is amplified by Noxa, not Bim.

Pro-apoptotic signaling instigated by endoplasmic reticulum (ER) stress is tightly governed by the BH3-only proteins like Noxa and Bim, which help trigger apoptosis, in part by inactivating mitochondria protecting proteins like Mcl-1. Bim/Noxa-based pro-apoptotic signaling has been implicated for various ER stressors but not yet for those causing "ER-focused" production of severe oxidative stress. In the present study we found that photo-oxidative (phox)-ER stress induced by hypericin-based photodynamic therapy is associated with activation of PERK (an ER sessile, stress sensor), robust induction of CHOP (a pro-apoptotic transcription factor) and induction of Bim and Noxa (accompanied by an eventual drop in Mcl-1 levels). Interestingly Noxa, but not Bim, contributed toward phox-ER stress induced apoptosis, regulated by PERK in a CHOP-independent, temporally-defined manner. These observations shed further light on complex signaling pathways elicited byphox-ER stress and vouch for directing more investigation toward the role of PERK in cell death governance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app