Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Vitamin D activities and metabolic bone disease.

Vitamin D activity requires an adequate vitamin D status as indicated by the serum level of 25-hydroxyvitamin D and appropriate expression of genes coding for vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase, the enzyme which converts 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. Vitamin D deficiency contributes to the aetiology of osteomalacia and osteoporosis. The key element of osteomalacia, or rickets in children, is a delay in mineralization. It can be resolved by normalisation of plasma calcium and phosphate homeostasis independently of vitamin D activity. The well characterised endocrine pathway of vitamin D metabolism generates plasma 1,25-dihydroxyvitamin D and these endocrine activities are solely responsible for vitamin D regulating plasma calcium and phosphate homeostasis and protection against osteomalacia. In contrast, a large body of clinical data indicate that an adequate serum 25-hydroxyvitamin D level improves bone mineral density protecting against osteoporosis and reducing fracture risk. Recent research demonstrates that the three major bone cell types have the capability to metabolise 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D to activate the vitamin D receptor and modulate gene expression. Dietary calcium intake interacts with vitamin D metabolism at both the renal and bone tissue levels to direct either a catabolic action on bone through the endocrine system when calcium intake is inadequate or an anabolic action through a bone autocrine or paracrine system when calcium intake is sufficient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app