Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diarylheptanoid compounds from Alnus nepalensis express in vitro and in vivo antifilarial activity.

Acta Tropica 2013 December
A large number of medicinal plants remain to be explored for antifilarial compounds. In the present study a crude methanolic extract of leaves of Alnus nepalensis, chloroform- and n-butanol-partitioned fractions from the crude extract and 6 bioactivity-guided isolated compounds including two new diarylheptanoid from the fractions were assayed for microfilaricidal, macrofilaricidal and female worm sterilizing activity using the lymphatic filariid Brugia malayi in in vitro and in vivo systems. In vitro, the crude methanolic extract exerted better microfilaricidal (LC100: 15.63μg/ml, IC50: 6.00μg/ml) than macrofilaricidal (LC100: >250; IC50: 88μg/ml) activity whereas chloroform and n-butanol fractions were more macrofilaricidal (LC100: 125 and 31.25μg/ml; IC50: 13.14 and 11.84, respectively) than microfilaricidal (LC100: 250-500μg/ml, IC50: 44.16μg/ml). In addition, n-butanol fraction also caused 74% inhibition in MTT reduction potential of the adult worms. In vivo (doses: crude: 100-200mg/kg; fractions: 100mg/kg, i.p.×5 days) the chloroform fraction exerted >50% macrofilaricidal activity whereas methanolic extract and n-butanol fraction produced 38-40% macrofilaricidal action along with some female sterilizing efficacy. Of the 5 diarylheptanoid compounds isolated, alnus dimer, and (5S)-5-hydroxy-1-(4-hydroxyphenyl)-7-(3,4-dihydroxyphenyl)-3-heptanone were found to show the most potent with both macrofilaricidal (LC100: 15.63μg/ml, IC50: 6.57-10.31μg/ml) and microfilaricidal (LC100: 31.25-62.5μg/ml, IC50: 11.05-22.10μg/ml) activity in vitro. These findings indicate that the active diarylheptanoid compounds may provide valuable lead for design and development of new antifilarial agent(s).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app