Add like
Add dislike
Add to saved papers

Elimination pathways of cyclosarin (GF) mediated by β-cyclodextrin in vitro: pharmacokinetic and toxicokinetic aspects.

Toxicology Letters 2013 October 25
Cyclodextrins (CD) are promising small molecular scavengers showing favourable degradation of extremely toxic organophosphorus compounds (OP) such as tabun (GA), soman (GD) or cyclosarin (GF). For β-CD derivatives as potential OP antidotes with low intrinsic toxicity it is of great interest to completely understand the modes of interaction of both compounds in terms of OP detoxification. The mechanisms of CD action are not completely understood which prompted us to investigate the interactions of GF and β-cyclodextrin (β-CD) as model compounds. Using positive electrospray ionization mass spectrometry (ESI/MS), the formation of covalent conjugates of β-CD with O-cyclohexylmethylphosphonate (CHMP) residue was detected for the first time and was examined in vitro. With a newly developed LC-MS method the formation of O-cyclohexylmethylphosphonic acid (CHMPA) (i.e. GF hydrolysis) and covalent CHMP-β-CD conjugates was analyzed. Compared to water, tris(hydroxymethyl)aminomethane (TRIS) reduced the formation of covalent conjugates but amplified formation of CHMPA. Depending on experimental conditions the degradation of GF by β-CD may be preferably catalytic or stoichiometric. For illustrating different possible reaction pathways a scheme was established that could support the idea of β-CD acting as an artificial enzyme. These results provide an important insight into the β-CD mediated detoxification pathways of GF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app