JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of endoplasmic reticulum stress in apoptosis of testicular cells induced by low-dose radiation.

The study examined the role of endoplasmic reticulum stress (ERS) and signaling pathways of inositol-requiring enzyme-1 (IRE1), RNA-activated protein kinase-like ER kinase (PERK) and activating transcription factor-6 (ATF6) in apoptosis of mouse testicular cells treated with low-dose radiation (LDR). In the dose-dependent experiment, the mice were treated with whole-body X-ray irradiation at different doses (25, 50, 75, 100 or 200 mGy) and sacrificed 12 h later. In the time-dependent experiment, the mice were exposed to 75 mGy X-ray irradiation and killed at different time points (3, 6, 12, 18 or 24 h). Testicular cells were harvested for experiments. H(2)O(2) and NO concentrations, and Ca(2+)-ATPase activity were detected by biochemical assays, the calcium ion concentration ([Ca(2+)]i) by flow cytometry using fluo-3 probe, and GRP78 mRNA and protein expressions by quantitative real-time RT-PCR (qRT-PCR) and Western blotting, respectively. The mRNA expressions of S-XBP1, JNK, caspase-12 and CHOP were measured by qRT-PCR, and the protein expressions of IRE1α, S-XBP1, p-PERK, p-eIF2α, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP by Western blotting. The results showed that the concentrations of H2O2 and NO, the mRNA expressions of GRP78, S-XBP1, JNK, caspase-12 and CHOP, and the protein expressions of GRP78, S-XBP1, IRE1α, p-PERK, p-eIF2α, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP were significantly increased in a time- and dose-dependent manner after LDR. But the [Ca(2+)]i and Ca(2+)-ATPase activities were significantly decreased in a time- and dose-dependent manner. It was concluded that the ERS, regulated by IRE1, PERK and ATF6 pathways, is involved in the apoptosis of testicular cells in LDR mice, which is associated with ERS-apoptotic signaling molecules of JNK, caspase-12 and CHOP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app