Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Alterations of hypoxia-induced factor signaling pathway due to mammalian target of rapamycin (mTOR) suppression in ovarian clear cell adenocarcinoma: in vivo and in vitro explorations for clinical trial.

OBJECTIVES: Before setting into the clinical trial using a combination of mammalian target of rapamycin (mTOR) inhibitors (rapamycin and everolimus) and other anticancer drugs, this study was conducted to confirm the efficacy of the new therapeutic strategy for ovarian clear cell adenocarcinoma (CCA), which targeted mTOR-hypoxia-induced factor (HIF) signal transduction system.

MATERIALS AND METHODS: Using the cultured cells of CCA and animal models, alteration of mTOR-HIF cofactors and cell proliferation under the mTOR inhibitor-treated condition were analyzed.

RESULTS: Mammalian target of rapamycin-HIF cofactors were inhibited dependent on concentration by mTOR inhibitor, resulting in suppression of the cultured CCA proliferation. However, von Hippel-Lindau was up-regulated at the messenger RNA level. In the nude mice with subcutaneously implanted CCA cells, apoptosis and necrosis were detected especially around the center of the tumors in the mTOR inhibitor-treated group more conspicuously than in the nontreated group. In the assessment of combination therapy with other antitumor agents, a combined treatment with mTOR inhibitor and chemotherapeutic agents caused a significant decrease in tumor size compared to the chemotherapeutic agents-only group.

CONCLUSIONS: Treatment by mTOR inhibitor is expected to down-regulate the cell proliferation of the CCA as a new therapeutic strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app